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Abstract

We have introduced a class of exactly soluble Hamiltonian with either
SO(2n + 1) or SU(2) symmetry, whose ground states are the SO(2n + 1)

symmetric matrix product states. The hidden topological order in these states
can be fully identified and characterized by a set of nonlocal string order
parameters. The Hamiltonian possesses a hidden (Z2 × Z2)

n topological
symmetry. The breaking of this hidden symmetry leads to 4n degenerate ground
states with disentangled edge states in an open chain system. Such matrix
product states can be regarded as cluster states, applicable to measurement-
based quantum computation.

PACS numbers: 75.10.Pq, 75.10.Jm, 03.65.Fd

Quantum spin systems have shown many fascinating phenomena and stimulated great interest
in the past decades. Based on semiclassical argument, Haldane predicted that there is a finite
excitation gap in the ground state of an integer antiferromagnetic Heisenberg spin chain [1].
This intriguing feature of quantum spin chains results from the breaking of a hidden topological
symmetry embedded in the valence bond solid state proposed by Affleck, Kennedy, Lieb and
Tasaki (AKLT) [2]. The valence bond solid is a matrix product state in one dimension. It
shows a striking analogy to the Laughlin ground state for the fractional quantum Hall effect
[3, 4]. To characterize this topological symmetry, a set of nonlocal string order parameters
were introduced [5, 6]. These string order parameters provide a faithful quantification of
the hidden antiferromagnetic order of the S = 1 Heisenberg model. Associated with these
order parameters, a nonlocal unitary transformation can be constructed to expose explicitly
the Z2 × Z2 symmetry of the Hamiltonian [6–8]. However, a nonlocal string order parameter
that reflects correctly the hidden ZS+1 × ZS+1 topological symmetry of the higher-S valence
bond solid has not been found [9].
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In this paper, we introduce a novel matrix product state with SO(2n + 1) symmetry and
show that it is the exact ground state of a model Hamiltonian with nearest-neighbor interactions
constructed with either the SO(2n + 1) projection operators or more generally the SU(2) spin
projection operators. Unlike the valence bond solid state, we find that the hidden topological
order in this class of matrix product states can be fully identified and characterized by a set of
nonlocal string order parameters. When n = 1, the SO(3) symmetric matrix product state is
exactly the same as the S = 1 valence bond solid state and the model Hamiltonian possesses a
hidden Z2 ×Z2 topological symmetry [6–8]. When n > 1, it will be shown that the SO(2n+1)

ground state possesses a hidden (Z2 ×Z2)
n topological symmetry. The breaking of this hidden

symmetry leads to 4n degenerate ground states with disentangled edge states in an open chain
system.

Let us start by considering a one-dimensional lattice system with SO(2n + 1) symmetry.
Each lattice site contains 2n + 1 basis states {|na〉; a = 1, . . . , 2n + 1}, which can be rotated
within the SO(2n + 1) space as follows:

Lab|nc〉 = iδbc|na〉 − iδac|nb〉, (1)

where Lab(a < b) are the (2n2 + n) generators of the SO(2n + 1) Lie algebra, satisfying the
following commutation relations:

[Lab, Lcd ] = i(δadL
bc + δbcL

ad − δacL
bd − δbdL

ac). (2)

According to the Lie algebra, the product of any two SO(2n + 1) vectors can be decomposed
as a sum of an SO(2n + 1) scalar 1, an antisymmetric SO(2n + 1) tensor 2n2 + n, and a
symmetric SO(2n + 1) tensor 2n2 + 3n,

2n + 1 ⊗ 2n + 1 = 1 ⊕ 2n2 + n ⊕ 2n2 + 3n. (3)

The number above each underline is the dimension of the irreducible representation.
In the spinor representation, the SO(2n + 1) generators can be expressed as �ab =

[�a, �b]/2i, where �a (a = 1 ∼ 2n + 1) are the 2n × 2n matrices that satisfy the Clifford
algebra {�a, �b} = 2δab [10]. For each lattice site i, if the following matrix state is introduced:

gi =
∑

a

�a|na〉i ,

then it can be readily shown that the bond product of gi at any two neighboring sites have finite
projection only in the scalar 1 and the antisymmetric 2n2 + n subspaces spanned by

∣∣na
i

〉
and∣∣na

i+1

〉
states, because the product of �a and �b can be expressed as �a�b = δab + i�ab. This is

a special property of the SO(2n+ 1) spinor representation constructed by Clifford algebra. By
applying this argument to a periodic chain, we can show that the matrix product state defined
by

|�〉 = Tr(g1g2 · · · gL), (4)

is the exact ground state of the following SO(2n + 1) symmetric Hamiltonian:

HSO(2n+1) =
∑

i

P2n2+3n(i, i + 1), (5)

where P2n2+3n(i, j) is a projection operator that projects the states at sites i and j onto their
SO(2n + 1) symmetric tensor 2n2 + 3n. To compute the static correlation functions of the
matrix product ground state (4), we can use a transfer matrix method [8, 11]. At large distance,
the two-point correlation functions of SO(2n + 1) generators decay exponentially as〈

Lab
i Lab

j

〉 ∼ exp

(
−|j − i|

ξ

)
, (6)

with the correlation length ξ = 1/ ln
∣∣ 2n+1

2n−3

∣∣.
2
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For the three SO(2n + 1) channels given in equation (3), the bond Casimir charge∑
a<b

(
Lab

i + Lab
j

)2
for two adjacent sites takes the values 0, 4n − 2 and 4n + 2, respectively.

Combining this result with the equation
∑

a<b

(
Lab

i

)2 = 2n and the completeness condition of
the projection operators, we can then express the bond projection operator P2n2+3n(i, j) with
the SO(2n + 1) generators as

P2n2+3n(i, j) = 1

2

∑
a<b

Lab
i Lab

j +
1

4n + 2

(∑
a<b

Lab
i Lab

j

)2

+
n

2n + 1
.

Thus the model defined by equation (5) is a bilinear–biquadratic Hamiltonian in terms of the
SO(2n + 1) generators.

At each lattice site, the 2n + 1 vectors of SO(2n + 1) can be also constructed from
the S = n quantum spin states. In the SU(2) spin language, the last two channels in
equation (3) correspond to the total bond spin S = 1, 3, . . . , 2n − 1 and S = 2, 4, . . . , 2n

states, respectively. Furthermore, it can be shown that the bond projection operators of
SO(2n + 1) can be expressed using the spin projection operators PS=m(i, j) as

P2n2+n(i, j) =
n∑

m=1

PS=2m−1(i, j), P2n2+3n(i, j) =
n∑

m=1

PS=2m(i, j).

Thus P2n2+3n(i, j) is to project the spin states at sites i and j onto the nonzero even total spin
states. Based on this property, we can further show that the matrix product wavefunction (4)
is also the ground state of the following integer spin Hamiltonian:

HSU(2) =
∑

i

n∑
m=1

JmPS=2m(i, i + 1) (7)

with all Jm > 0. This model is SU(2)-invariant in general. However, the ground state (4)
possesses an emergent SO(2n+ 1) symmetry. When all Jm = 1,HSU(2) becomes SO(2n+ 1)-
invariant. In this case, HSU(2) simply reduces to HSO(2n+1).

It is interesting to compare HSU(2) with the AKLT model of valence bond solid proposed
by Affleck et al [2, 3],

HAKLT =
∑

i

2n∑
m=n+1

KmPS=m(i, i + 1) (8)

with all Km > 0. The ground state of HAKLT is also a matrix product state similar to
equation (4), but gi is now a (S + 1) × (S + 1) = (n + 1) × (n + 1) matrix [8]. These two
matrix product states have different topological properties and belong to different topological
phases when n > 1. Therefore HSU(2) and HSO(2n+1) can be viewed as a new family of exactly
solvable quantum integer spin models to understand the internal structures of Haldane gap
phases.

When n = 1, both HSO(2n+1) and HSU(2) become exactly the same as the S = 1 AKLT
model HAKLT. The ground state has a hidden antiferromagnetic order in which the up and
down spins lie alternately along the lattice, sandwiched by arbitrary number of non-polarized
spin states. This dilute antiferromagnetic order can be measured by a nonlocal string order
parameter first proposed by den Nijs and Rommelse [5],

Oμ = lim
|j−i|→∞

〈
S

μ

i

j−1∏
l=i

eiπS
μ

l S
μ

j

〉
= 4

9
, (9)
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where μ = x, y or z. By performing a nonlocal unitary transformation [6–8] to the spin
operators with the following unitary operators:

U =
∏
j<i

exp
(
iπSz

jS
x
i

)
, (10)

two of the above string order parameters are converted into the conventional spin–spin
correlation functions. The SU(2) symmetry of the AKLT model is then reduced to a discrete
Z2 × Z2 symmetry [6–8]. This reveals a hidden topological symmetry of the original model.
The breaking of this topological symmetry leads to the opening of the Haldane gap and the
four-fold degenerate ground states in an open chain.

Similar to the n = 1 case, the general SO(2n + 1) (n > 1) matrix product state (4) also
contains interesting hidden antiferromagnetic orders. Since SO(2n+1) is a rank-n algebra, one
can always classify the states at each site using n quantum numbers (weights) {m1, . . . , mn}
subjected to the constraint

mαmβ = 0, (α �= β). (11)

Here {m1, . . . , mn} are the eigenvalues of the mutually commuting Cartan generators
{L12, L34, . . . , L2n−1,2n},

L2α−1,2α|mα〉 = mα|mα〉, (mα = 0,±1). (12)

According to equation (1), all these Cartan generators annihilate the state
∣∣n2n+1

〉 =
|0, 0, . . . , 0〉 . The other basis states are given by

|0 · · · ,mα = ±1, . . . 0〉 = 1√
2
(|n2α〉 ± i|n2α−1〉). (13)

From the property of the Clifford algebra, the hidden antiferromagnetic order of the ground
state |�〉 can now be identified. In any of these mα(α = 1 ∼ n) channel, it can be shown
that |mα〉 is dilute antiferromagnetically ordered, same as for the S = 1 valence bond solid.
Namely, the states of mα = 1 and mα = −1 will alternate in space if all the mα = 0 states
between them are ignored. For example, a typical configuration of the ground state of the
SO(5) system is

m1 : · · · 0 ↑ 0 0 ↓ ↑ 0 0 0 ↓ ↑ 0 ↓ 0 ↑ · · ·
m2 : · · · ↑ 0 ↓ 0 0 0 ↑ ↓ 0 0 0 ↑ 0 ↓ 0 · · · ,

where (↑, 0,↓) represent |m〉 = (|1〉, |0〉, | − 1〉) states, respectively.
This hidden antiferromagnetic order reminds us a generalization of the den Nijs–

Rommelse nonlocal string order parameters to characterize this state. Similar to
equation (9) of the n = 1 case [5], the string order parameters can be defined as

Oab = lim
|j−i|→∞

〈
Lab

i

j−1∏
l=i

exp
(
iπLab

l

)
Lab

j

〉
. (14)

Since the ground state is SO(2n+1) rotationally invariant, the above nonlocal order parameters
should all be equal to each other. Thus to determine the value of these parameters, only the
value of O12 needs to be evaluated. In the L12 channel, the role of the phase factor in
equation (14) is to correlate the finite spin polarized states in the m1 channel at the two ends
of the string. If nonzero m1 takes the same value at the two ends, then the phase factor is
equal to 1. On the other hand, if nonzero m1 takes two different values at the two ends, then
the phase factor is equal to −1. Thus the value of O12 is determined purely by the probability
of m1 = ±1 appearing at the two ends of the string. Since the ground state is translation
invariant, it is straightforward to show that the probability of the states m1 = ±1 appearing at
one lattice site is 2/(2n + 1) and thus O12 = 4/(2n + 1)2.
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Figure 1. Changes of a typical configuration of the SO(5) ground state under the unitary
transformation defined by equation (16). U1 and U2 transform successively all m1 and m2 states
to two diluted ferromagnetic configurations, respectively.

(This figure is in colour only in the electronic version)

The Kennedy–Tasaki unitary transformations (10) for n = 1 case [6–8] can
also be generalized to arbitrary n > 1 cases. In the SO(2n + 1) Lie algebra,
(L2α−1,2α, L2α−1,2n+1, L2α,2n+1) span an SO(3) sub-algebra in which exp(iπL2α,2n+1) plays
the role of flipping the quantum number mα . This exponential operator can flip the quantum
numbers of mα without disturbing the quantum states in all other channels. This indicates that
if we take the following nonlocal unitary transformation in the mα channel:

Uα =
∏
j<i

exp
(
iπL

2α−1,2α
j L

2α,2n+1
i

)
, (15)

then all the configurations in this channel will be ferromagnetically ordered. Furthermore, by
performing this nonlocal transformation successively in all the channels

U =
n∏

α=1

Uα, (16)

then all the configurations of the ground state will become ferromagnetically ordered. As
an example, figure 1 shows how the SO(5) matrix product state |�〉 is successively changed
under this nonlocal unitary transformation.

By applying the generalized unitary transformation (16) to the Cartan generators, it can
be shown that

ULab
i U−1 = Lab

i exp

⎛
⎝iπ

i−1∑
j=1

Lab
j

⎞
⎠ . (17)

Substituting this formula into equation (14), we find that

Oab = lim
|j−i|→∞

〈
Lab

i Lab
j

〉
U
. (18)

Thus the nonlocal string order parameters Oab become the ordinary correlation functions of
local operators after the unitary transformation.

Under the above transformation, the symmetry of the original Hamiltonian HSO(2n+1) is
reduced, and determined by the symmetry of the unitary transformation operators. In the mα

channel, it can be shown that the unitary operator Uα possesses only a Z2 × Z2 symmetry
[6–8]. Therefore, the Hamiltonian after the transformation has a (Z2 × Z2)

n symmetry. This

5
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is the hidden topological symmetry of the original Hamiltonian HSO(2n+1) associated with the
hidden topological order of the original matrix product state |�〉. Furthermore, the unitary
transformation (16) breaks the translational symmetry. When it is applied to an open chain
system, the hidden (Z2×Z2)

n topological symmetry of the Hamiltonian will be further broken,
yielding 2n free edge states at each end of the chain. Therefore, the open chain has totally 4n

degenerate ground states, which can be distinguished by their edge states.
As already mentioned, HSO(2n+1) is a bilinear–biquadratic Hamiltonian in terms of the

SO(2n + 1) generators. Actually, we can introduce a general one-parameter family of the
SO(2n + 1) bilinear–biquadratic model as

H =
∑

i

⎡
⎣cos θ

∑
a<b

Lab
i Lab

i+1 + sin θ

(∑
a<b

Lab
i Lab

i+1

)2
⎤
⎦ , (19)

which is an extension of the quantum spin-1 bilinear–biquadratic model. To determine the
region of the Haldane gapped phase, we need to identity several special integrable points. At
θ1 = tan−1 1

2n−1 , the model (19) becomes the Uimin–Lai–Sutherland (ULS) model with an
enhanced SU(2n + 1) symmetry, which can be solved by Bethe ansatz [12]. It is well known
that this model has gapless excitations described by SU(2n+1)1 Wess–Zumino–Witten model
[13]. Based on the renormalization group approach, for θ < θ1, Itoi and Kato [14] found that
the marginally relevant interaction generates the Haldane gap, and the transition at the ULS
point belongs to the universality class of the Kosterlitz–Thouless phase transition.

One the other hand, using quantum inverse scattering methods, Reshetikhin [15] had
discovered another class of one-dimensional quantum integrable SO(n) model, corresponding
to the point θ2 = tan−1 2n−3

(2n−1)2 , where there are also gapless excitations above the ground state.
For n = 1, this point corresponds to the quantum spin-1 Takhatajan–Babujian model [16],
which is at the boundary between Haldane gap phase and dimerized phase. These rigorous
results suggest that the Haldane gapped phase for the general model (19) exists in the region

tan−1 2n − 3

(2n − 1)2
< θ < tan−1 1

2n − 1
. (20)

The exactly soluble point θMPS = tan−1 1
2n+1 has been included. In the whole region, we

expect that the system has an energy gap in the excitations and the ordinary correlation
functions display exponentially decay. However, a nonvanishing string order parameter (14)
can measure the breaking of the hidden topological symmetry.

For n = 1, the spin-1 quantum antiferromagnetic Heisenberg model (θ = 0) is just
included in this region, however, we find that the SO(2n + 1) Heisenberg point for n � 2 does
not belong to the Haldane gap phase. In particular, when n = 2, the corresponding SO(5)

antiferromagnetic Heisenberg model has been used by Scalapino et al [17] to describe the
SO(5) ‘superspin’ phase on a ladder system of interacting electrons. Therefore, the ground-
state and low-lying excitations of the quantum SO(2n + 1) symmetric generalized Heisenberg
model for n � 2 deserves further studies.

In conclusion, we have constructed an SO(2n + 1)-invariant matrix product state and
shown that it is the exact ground state of an SO(2n + 1)-symmetric Hamiltonian defined
by equation (5) or more generally an SU(2)-symmetric spin Hamiltonian defined by
equation (7). This matrix product state contains diluted antiferromagnetic orders in n different
channels and a hidden (Z2 × Z2)

n topological symmetry. These topological long-range
order can be characterized by a set of nonlocal string order parameters. The breaking of
the (Z2 × Z2)

n topological symmetry leads to the opening of an excitation gap between the
ground state and the first excitation state. In an open chain system, the 4n edge states become
completely disentangled and the ground states are 4n degenerate. The multiple Z2 nature

6
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of these topological states suggests that they can serve as a resource of multiple qubits. We
believe that these states, similar as for the S = 1 AKLT valence bond state, can be encoded to
perform ideal quantum teleportation [18] or fault-tolerant quantum computation through local
spin measurements.
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